Relative analysis on fluid flow models for graphene oxide suspended blood flow: A Keller-box approach

Author:

Rathore Niraj1,Sandeep N.1ORCID

Affiliation:

1. Department of Mathematics, Central University of Karnataka, Kalaburagi, Karnataka, India

Abstract

The biomedical applications and antibacterial properties of graphene oxide (GO) nanoparticles help to treat tumors and improve drug delivery results. The 2-D flow of GO-nanoparticles integrated blood flow through cosine character stenosis artery with radiative heat, heat sink/source, and Cattaneo–Christov temperature flux is assumed. The Darcy–Forchhiemer condition and porosity parameter are imposed in momentum equations. The governing equalities and borderline settings are transformed into ODE using similarity transformation and resolved mathematically using the Keller-box scheme. First, the GO-nanolayer concept has been discussed to inspect heat transmission rate and change in energy and exhibited graphically. A comparison of Maxwell, Sutterby, and Oldroyd-B flow models is made and displayed schematically. It is noticed that the thermal performance is raised due to the GO nanolayer. The energy transmission rate is higher in the Oldroyd-B flow compared to the remaining two flow models. The simulation of this study may help understand the mechanism of blood flows through the stenosis artery. Also, this study can be used for advanced research in biomedical, cancer treatment, etc.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3