Affiliation:
1. School of Automotive Studies, Tongji University, Shanghai 201804, China
2. SAIC Motor, General Institute of Innovation Research and Development, Shanghai 201804, China
Abstract
Heavy-duty diesel engines equipped with turbochargers is an effective way to alleviate energy shortage and reduce gas emissions, but their compressor aerodynamic noise emissions have become an important issue that needs to be addressed urgently. Therefore, to study the aerodynamic noise emission characteristics of a compressor during the full operating range, experimental and numerical simulation methods were used to analyze the aerodynamic noise emissions. The results showed that aerodynamic noise’s total sound pressure level (SPL) increased with increased speed under the test conditions. At low speeds, the total SPL of aerodynamic noise was affected by the mass flow of the compressor more obviously. The maximum difference of aerodynamic noise total SPL was 1.55 dB at 60,000 r/min under different mass flows. At the same speed, the compressor could achieve lower aerodynamic noise emissions by operating in the high-efficiency region (middle mass flows). In the compressor aerodynamic noises, the blade passing frequency (BPF) noise played a dominant role. The transient acoustic-vibration spectral characteristics and fluctuation pressure analysis indicated that BPF and its harmonic frequency noises were mainly caused by the unsteady fluctuation pressure. As the speed increased, the BPF noise contributed more to the total SPL of the aerodynamic noise, and its percentage was up to 75.35%. The novelty of this study was the analysis of the relationship between compressor aerodynamic noise and internal flow characteristics at full operating conditions. It provided a theoretical basis for reducing the heavy-duty diesel engine turbocharger compressor aerodynamic noise emissions.
Funder
National Natural Science Foundation of China Youth Science Foundation project
State Key Laboratory of Internal Combustion Engine Reliability Open Subject Foundation of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献