Comparative experimental study on macroscopic spray characteristics of various oxygenated diesel fuels

Author:

Bao Jianhui1,Wang Haohao2,Wang Ruofei3,Wang Qingxin2,Di Liming3,Shi Cheng3ORCID

Affiliation:

1. Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science Yanshan University Qinhuangdao China

2. Weichai Power Co., Ltd. Weifang China

3. School of Vehicle and Energy Yanshan University Qinhuangdao China

Abstract

AbstractUnder high ambient pressure (5 MPa) and different injection pressures (90, 120, and 150 MPa), a high‐speed imaging technique was carried out to comparatively investigate the macroscopic spray characteristics of diesel with three different types of blended fuel in a constant volume chamber. The oxygenated fuels were n‐butanol (B), pine oil (P), and 2,5‐dimethylfuran (DMF). All their blending ratio with diesel were 20%. Results showed that less viscosity could be improved the spray characteristics of the fuel in the range of experimental conditions. Then, the tested fuels had a longer penetration and a greater spray area with increasing the injection pressure from 90 to 150 MPa. On the other hand, the percentage increases in the mean spray cone angle of D100, B20, P20, and DMF20 were 3%, 4.4%, 2.4%, and 2.9%, respectively. At the same experimental condition, the spray penetrations of DMF20 and P20 were larger than that of D100, but the spray penetration of B20 was basically similar to D100. Besides, the performance of the spray cone angle and spray area were D100 < B20 < P20 < DMF20. In addition, the comprehensive influence was that blending oxygenated fuels would be a benefit for developing fuel atomization and the air–fuel mixture of conventional diesel fuel.

Funder

Natural Science Foundation of Hebei Province

Publisher

Wiley

Subject

General Energy,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3