Affiliation:
1. Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
2. Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
Abstract
An increasing trend of anthropogenic activities such as urbanization and industrialization has resulted in induction and accumulation of various kinds of heavy metals in the environment, which ultimately has disturbed the biogeochemical balance. Therefore, the present study was conducted to probe the efficiency of conocarpus (Conocarpus erectus L.) waste-derived biochar and its modified derivatives for the removal of lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) from aqueous solutions. Biochar was produced at 600 °C and modified with humic acid (1:10 w/v ratio) and rock phosphate (0.5:1 w/w ratio). Additionally, produced biochar, as well as humic acid and rock phosphate-modified biochars, were subjected to ball milling separately. Equilibrium and kinetics batch experiments were conducted to investigate heavy metals adsorption on synthesized adsorbents. Adsorption isotherms and kinetics models were employed to explore the adsorption efficiency of produced materials for metals adsorption. Among all the applied adsorbents, ball-milled biochars showed comparatively higher adsorption compared to un-milled biochars. Humic acid and rock phosphate-modified milled biochar showed the highest adsorption capacity for Pb (18.85 mg g−1), while rock phosphate-modified milled biochar showed the highest adsorption capacity for Cu and Zn (24.02 mg g−1 and 187.14 mg g−1), and humic acid modified biochar adsorbed maximum Cd (30.89 mg g−1). Adsorption isotherm study confirmed Freundlich as the best-suited model (R2= 0.99), while kinetics adsorption was well described by the pseudo-second-order (R2 = 0.99). Hence, it was concluded that ball-milled biochar modified with humic acid and rock phosphate could potentially remove heavy metals from contaminated water.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Reference82 articles.
1. Swartjes, F.A. (2011). Dealing with Contaminated Sites: From Theory towards Practical Application, Springer Science & Business Media.
2. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities;Wu;J. Hazard. Mater.,2010
3. Agency for Toxic Substances and Disease Registry of the U.S. Department of Health and Human Services (ATSDR) (2003). Toxicological Profile for Thallium, Prepared by Clement International Corp., under Contract No. 205-88-0608.
4. Global-scale patterns in anthropogenic Pb contamination reconstructed from natural archives;Marx;Environ. Pollut.,2016
5. Metal (loid) s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health;Khanam;Sci. Total Environ.,2020
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献