Kaolinite-Composited Biochar and Hydrochar as Low-Cost Adsorbents for the Removal of Cadmium, Copper, Lead, and Zinc from Aqueous Solutions

Author:

Al-Swadi Hamed A.1,Al-Farraj Abdullah S.1ORCID,Al-Wabel Mohammad I.1ORCID,Ahmad Munir1ORCID,Ahmad Jahangir1,Mousa Mohammed Awad1ORCID,Rafique Muhammad Imran1,Usama Muhammad1

Affiliation:

1. Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia

Abstract

During the last decade, due to an increase in anthropogenic activities, a higher environmental accumulation of heavy metals has been found, which has resulted in disturbed biogeochemical balance. Many kinds of remediation techniques have been practiced to mitigate heavy metal toxicity in the aqueous phase; however, adsorption is the most commonly accepted technique for efficient heavy metal removal. In this study, conocarpus waste was pretreated with 0%, 10%, and 20% kaolinite and pyrolyzed at 600 °C for 1 h to synthesize biochars (BC, BCK10, and BCK20, respectively), while hydrothermalized at 200 °C for 6 h to synthesize hydrochars (HC, HCK10, and HCK20, respectively). After characterization, synthesized materials were employed for the removal of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) from contaminated water. Experimental data was further subjected to isotherm and kinetic models to estimate the adsorption mechanism. Among all the tested adsorbents, kaolinite-synthesized materials revealed comparatively higher adsorption compared to pristine materials. It was found that pH 7 was optimum for the maximum removal of tested heavy metals. Adsorption of tested heavy metals was well explained by Langmuir and Freundlich isotherms, while pseudo-second order and Elovich kinetics models fitted well for adsorption kinetics. The maximum adsorption capacity, as predicted by the Langmuir isotherm, was the highest for BCK20 (63.19 mg g−1 for Cd, 228.05 mg g−1 for Cu, 248.33 mg g−1 for Pb, and 45.79 mg g−1 for Zn) compared to the other tested materials, and for HCK20 (31.93 mg g−1 for Cd, 181.78 mg g−1 for Cu, 231.85 mg g−1 for Pb, and 45.72 mg g−1), it was higher than pristine HC. Isotherm and kinetics modeling data indicated that multiple mechanisms were involved in Cd, Cu, Pb, and Zn removal, such as chemisorption and electrostatic interactions. The amount of oxygen-containing surface functional groups and SiO2 particles could be responsible for the maximum adsorption of heavy metals by BCK20 and HCK20. Our findings suggest that biochar, hydrochar, and their kaolinite-modified composites possess the excellent potential to remove heavy metals from contaminated aqueous media, and could be further applied to treat wastewater to mitigate heavy metal toxicity for a sustainable environment.

Funder

Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3