Horse Herd Optimized Intelligent Controller for Sustainable PV Interface Grid-Connected System: A Qualitative Approach

Author:

Ganguly Anupama1,Biswas Pabitra Kumar1ORCID,Sain Chiranjit2,Azar Ahmad Taher345ORCID,Mahlous Ahmed Redha34ORCID,Ahmed Saim4

Affiliation:

1. Department of Electrical and Electronics Engineering, National Institute of Technology Mizoram, Aizawl 796012, India

2. Electrical Engineering Department, Ghani Khan Choudhury Institute of Engineering and Technology, Malda 732141, India

3. College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia

4. Automated Systems and Soft Computing Lab (ASSCL), Prince Sultan University, Riyadh 11586, Saudi Arabia

5. Faculty of Computers and Artificial Intelligence, Benha University, Benha 13518, Egypt

Abstract

The need for energy is always increasing as civilization evolves. Renewable energy sources are crucial for meeting energy demands as conventional fuel resources are slowly running out. Researchers are working to extract the most amount of power possible from renewable resources. Numerous resources are in demand, including solar, wind, biomass, tidal, and geothermal resources. Solar energy outperformed all the aforementioned resources in terms of efficiency, cleanliness, and pollution freeness. Intermittency, however, is the resource’s main shortcoming. Maximum power point tracking algorithm (MPPT) integration is required for the system to achieve continuous optimum power by overcoming the feature of intermittency. However, generating electrical energy from solar energy has presented a significant problem in ensuring the output power’s quality within a reasonable range. Total harmonic distortion (THD), a phenomenon, may have an impact on the power quality. Depending on the properties of the load, variables like power factor, voltage sag/swell, frequency, and unbalancing may occur. The quality of power and its criterion exhibits a non-linear connection. The article’s primary objective is to analyze the PV interface grid-linked system’s qualitative and quantitative performance. With respect to varying solar irradiation conditions, partial shading conditions, and solar power quality within the acceptable dimension, a novel intelligent multiple-objective horse herd optimization (HHO)-based adaptive fractional order PID (HHO-AFOPID) controller is used to achieve this goal. Adaptive fractional order PID (AFOPID), conventional FOPID, and PID controllers were used to evaluate the performance of the suggested controller, which was then validated using a commercially available PV panel in MATLAB/Simulink by varying the productivity of non-conventional resources, the inverter’s level of uncertainty, and the potential at the grid’s end. In order to realize the features of the system, sensitivity examination is also carried out for solar energy’s sensitive parameters. The stability analysis of the proposed control topology is also carried out in terms of the integral absolute error (IAE) and integral time absolute error (ITAE). The examination of the sensitivity of variations in solar radiation in kilowatt per square meter per day is based on the total net present cost (TNPC) and levelized cost of energy (LCOE), as optimal dimension and energy cost are both aspects of priority. The suggested control methodology is an approach for the qualitative and quantitative performance analysis of a PV interface grid-oriented system.

Funder

Prince Sultan University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3