PEMFC Current Control Using a Novel Compound Controller Enhanced by the Black Widow Algorithm: A Comprehensive Simulation Study

Author:

Silaa Mohammed Yousri12ORCID,Barambones Oscar2ORCID,Cortajarena José Antonio3ORCID,Alkorta Patxi3ORCID,Bencherif Aissa2ORCID

Affiliation:

1. Telecommunications Signals and Systems Laboratory (TSS), Amar Telidji University of Laghouat, BP 37G, Laghouat 03000, Algeria

2. Engineering School of Vitoria, University of the Basque Country UPV/EHU, Nieves Cano 12, 1006 Vitoria, Spain

3. Engineering School of Gipuzkoa, University of the Basque Country, UPV/EHU, Avda Otaola N29, 20600 Eibar, Spain

Abstract

Proton exchange membrane fuel cells (PEMFCs) play a crucial role in clean energy systems. Effective control of these systems is essential to optimize their performance. However, conventional control methods exhibit limitations in handling disturbances and ensuring robust control. To address these challenges, this paper presents a novel PI sliding mode controller-based super-twisting algorithm (PISMCSTA). The proposed controller is applied to drive the DC/DC boost converter in order to improve the PEMFC output power quality. In addition, the black widow optimization algorithm (BWOA) has been chosen to enhance and tune the PISMCSTA parameters according to the disturbance changes. The performance of the PISMCSTA is compared with the conventional STA controller. Comparative results are obtained from numerical simulations and these results show that the developed proposed PISMCSTA gives better results when compared to the conventional STA. A reduction of up to 8.7% in the response time could be achieved and up to 66% of the chattering effect could be eliminated by using the proposed controller. Finally, according to these results, the proposed approach can offer an improvement in energy consumption.

Funder

Basque Government

Diputación Foral de Álava

UPV/EHU

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3