Identification and Factor Analysis of Traffic Conflicts in the Merge Area of Freeway Work Zone

Author:

Wang Pan1,Zhu Shunying2,Zhao Xiaoyue2

Affiliation:

1. Wuhan Planning and Design Co., Ltd., Wuhan 430010, China

2. School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China

Abstract

The merge areas of freeway work zones include relatively significant safety hazards that have continuously led to urgent safety issues to be solved by the management departments. In order to make up for the cumbersome process of independent identification of rear-end collisions and lane change collisions on complex road sections, an appropriate identification method of traffic conflicts in the merge area of freeway work zone was explored, this study collected vehicle running tracking data from the merge areas of multiple work zones, using an unmanned aerial vehicle video technique. Based on an inter-frame difference method and the principle of a spatio-temporal context visual tracking algorithm, the vehicles were detected and tracked, and the coordinate data of the vehicles in continuous motion were parsed using MATLAB 2018b extension tools. Based on the behavior characteristics of vehicle conflict avoidance, a new identification method for evading severe traffic conflicts is proposed according to the initial velocity, acceleration, and accident rate of section traffic. Then, a statistical analysis was performed on the spatial distribution characteristics of the traffic conflicts in typical merge areas. The impacts of the road conditions in work zones, vehicle factors, and traffic flow factors on traffic conflicts were analyzed. A binomial logistic model was established to identify the main influencing factors. The results show that in the merge area of the freeway work zone, there are serious traffic conflicts between vehicles in the following two situations: (I) v∈[7,13.5] m/s and a∈[−3.96,−0.65] m/s2; and (Ⅱ) v∈[13.5,24.3] m/s, and a∈[−3.96,−1.57] m/s2. The probabilities of serious traffic conflicts in the first and last 25 m of the merge area are greater than those in the other sections. The smaller the space between the upstream work zone and the merge area, the greater the probability of serious traffic conflicts between vehicles. When the average vehicle speed is relatively high, the probability of serious conflicts is the highest, i.e., by a multiple of 5.95 from the baseline. Moreover, the probability of serious conflicts between vehicles is higher for larger vehicles, i.e., 4.765 times that for small vehicles. The research results can serve as a reference for freeway management departments to improve the safety levels of merge areas during road work. For example, the probability of serious conflicts can be effectively reduced by setting up reasonable speed limit signs in the work zone, increasing the spacing between the work zone and merge area, and appropriately diverting large vehicles.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3