Short Term Traffic State Prediction via Hyperparameter Optimization Based Classifiers

Author:

Zahid Muhammad,Chen Yangzhou,Jamal ArshadORCID,Memon Muhammad QasimORCID

Abstract

Short-term traffic state prediction has become an integral component of an advanced traveler information system (ATIS) in intelligent transportation systems (ITS). Accurate modeling and short-term traffic prediction are quite challenging due to its intricate characteristics, stochastic, and dynamic traffic processes. Existing works in this area follow different modeling approaches that are focused to fit speed, density, or the volume data. However, the accuracy of such modeling approaches has been frequently questioned, thereby traffic state prediction over the short-term from such methods inflicts an overfitting issue. We address this issue to accurately model short-term future traffic state prediction using state-of-the-art models via hyperparameter optimization. To do so, we focused on different machine learning classifiers such as local deep support vector machine (LD-SVM), decision jungles, multi-layers perceptron (MLP), and CN2 rule induction. Moreover, traffic states are evaluated using traffic attributes such as level of service (LOS) horizons and simple if–then rules at different time intervals. Our findings show that hyperparameter optimization via random sweep yielded superior results. The overall prediction performances obtained an average improvement by over 95%, such that the decision jungle and LD-SVM achieved an accuracy of 0.982 and 0.975, respectively. The experimental results show the robustness and superior performances of decision jungles (DJ) over other methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3