Publisher
Springer Nature Singapore
Reference29 articles.
1. Brownlee J (2018) A gentle introduction to dropout for regularizing deep neural networks. Mach Learn Mastery 3:12–3
2. Van Rijn JN, Hutter F (2018) Hyperparameter importance across datasets. In: ACM SIGKDD international conference on knowledge discovery and data mining proceedings. ACM, pp 2367–2376
3. Klein A, Falkner S, Bartels S, Hennig P, Hutter F (2017) Fast Bayesian hyperparameter optimization on large datasets. Electron J Stat 11(2):4945–4968
4. Hutter F, Lücke J, Schmidt-Thieme L (2015) Beyond manual tuning of hyperparameters. Künstl Intell 29:329–337. https://doi.org/10.1007/s13218-015-0381-0D
5. Probst P, Boulesteix AL, Bischl B (2019) Tunability: importance of hyperparameters of machine learning algorithms. J Mach Learn Res 20(1):1934–1965