Influence of Postprocessing on Wear Resistance of Aerospace Steel Parts Produced by Laser Powder Bed Fusion

Author:

Metel Alexander S.ORCID,Grigoriev Sergey N.ORCID,Tarasova Tatiana V.ORCID,Filatova Anastasia A.ORCID,Sundukov Sergey K.ORCID,Volosova Marina A.ORCID,Okunkova Anna A.ORCID,Melnik Yury A.ORCID,Podrabinnik Pavel A.ORCID

Abstract

The paper is devoted to the research of the effect of ultrasonic postprocessing—specifically, the effects of ultrasonic cavitation-abrasive finishing, ultrasonic plastic deformation, and vibration tumbling on surface quality, wear resistance, and the ability of real aircraft parts with complex geometries and with sizes less than and more than 100 mm to work in exploitation conditions. The parts were produced by laser powder bed fusion from two types of anticorrosion steels of austenitic and martensitic grades—20Kh13 (DIN 1.4021, X20Cr13, AISI 420) and 12Kh18N9T (DIN 1.4541, X10CrNiTi18-10, AISI 321). The finishing technologies based on mechanical action—plastic deformation, abrasive wear, and complex mechanolysis showed an effect on reducing the submicron surface roughness, removing the trapped powder granules from the manufactured functional surfaces and their wear resistance. The tests were completed by proving resistance of the produced parts to exploitation conditions—vibration fatigue and corrosion in salt fog. The roughness arithmetic mean deviation Ra was improved by 50–52% after cavitation-abrasive finishing, by 28–30% after ultrasonic plastic deformation, and by 65–70% after vibratory tumbling. The effect on wear resistance is correlated with the improved roughness. The effect of used techniques on resistance to abrasive wear was explained and grounded.

Publisher

MDPI AG

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3