Validation of the Cooling Model for TMCP Processing of Steel Sheets with Oxide Scale Using Industrial Experiment Data

Author:

Beygelzimer EmmanuilORCID,Beygelzimer YanORCID

Abstract

To verify the mathematical model of the water-jet cooling of steel plates developed by the authors, previously performed experimental studies of the temperature of the test plates in a roller-quenching machine (RQM) were used. The calculated temperature change in the metal as it moved in the RQM was compared with the readings of thermocouples installed at the center of the test plate and near its surface. The basis of the model is the dependence of the temperatures of the film, transition and nucleate boiling regimes on the thickness of the oxide scale layer on the cooled surface. It was found that the model correctly accounts for the oxide scale on the sheet surface, the flow rates and combinations of the RQM banks used, the water temperature, and other factors. For all tests, the calculated metal temperature corresponded well with the measured one. In the experiments with interrupted cooling, the calculated temperature plots repeated the characteristic changes in the experimental curves. The main uncertainty in the modeling of cooling over a wide temperature range can be attributed to the random nature of changes in the oxide scale thickness during water cooling. In this regard, the estimated thickness of the oxide scale layer should be considered the main parameter for adapting the sheet temperature-control process. The data obtained confirm the possibility of effective application of the model in the ACS of industrial TMCP (Thermo-Mechanical Controlled Process) systems.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Reference91 articles.

1. Thermomechanical Processing of Steels

2. An overview on pipeline steel development for cold climate applications

3. Recent developments and applications of TMCP steel plates

4. Thermomechanical Processed Steels

5. Development of Thermo-Mechanical Control Process (TMCP) and High Performance Steel in JFE Steel;Endo;JFE Tech. Rep.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3