Determination of porosity functions in the pressure treatment of iron-based powder materials in agricultural engineering

Author:

Sivak Roman,Kulykivskyi Volodymyr,Savchenko Vasyl,Minenko Serhii,Borovskyi Viktor

Abstract

One of the most effective ways to obtain products with the required performance characteristics is the cold plastic deformation of porous workpieces. The relevance of the subject under study is due to the need to increase the reliability of the stress-strain state assessment during the plastic processing of porous workpieces by clarifying the porosity functions. The purpose of the study is to develop a method for describing the mechanical characteristics of porous bodies by single functions, the nature of which is determined by the properties of the base material and does not depend on the initial porosity. Analytical, numerical, experimental, and computational methods using modern specialised software systems were used to examine the processes of plastic deformation. The study presents a method for describing the mechanical characteristics of porous bodies with single functions. A set of interrelated methods and techniques is based on the basic provisions of the mechanics of plastic deformation of porous bodies and allows obtaining reliable porosity functions for this material, by clarifying theoretical dependencies by experimental studies. Therewith, experimental data were obtained in experiments on axisymmetric upsetting of cylindrical samples without friction at the ends. Based on the conducted theoretical studies, porosity functions for iron-based materials are obtained. Samples of five different initial porosities were used for the study. As a result of processing experimental data, final expressions for the porosity functions of the iron-based powder workpiece material are obtained. The study also presents a method for calculating the accumulated deformation of the base material. Flow curves for iron-based powder materials are plotted. The obtained results will allow formulating the practical recommendations for the development of technological processes for the plastic processing of powder materials by pressure to obtain products with specified physical and mechanical properties

Publisher

Scientific Journals Publishing House

Subject

Economics, Econometrics and Finance (miscellaneous),Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3