Active Disturbance Rejection Terminal Sliding Mode Control for Tele-Aiming Robot System Using Multiple-Model Kalman Observers

Author:

Ji PengORCID,Min Feng,Ma Fengying,Zhang Fangfang,Ni Dejing

Abstract

This study proposes a tele-aiming control strategy for the ground reconnaissance robot to track the maneuvering target rapidly in the presence of dynamic uncertainties, sensory measurement noises, and time-varying external disturbances. First, the tele-aiming control trajectory generated by human–computer interaction (HCI) device is filtered with a tracking differentiator and a recursive average filter. Second, the inertial impact force disturbance generated by maneuvering tele-aiming control jointly with the other uncertainties (e.g., internal friction, modeling error, etc.) is considered as a lumped disturbance, and then a novel multiple-model augmented-state extended Kalman observer (MEKO) is designed, capable of filtering out the joint measurement noises and estimating the lumped disturbance simultaneously. Lastly, a nonsingular terminal sliding mode controller is applied to eliminate the lumped disturbance and control the joints to track the corresponding desired joint trajectory. To verify the tele-aiming control performance, the random trajectory tracking experiments are designed to simulate the tele-aiming tracking control of maneuvering targets. As indicated from the experimental results, the proposed control strategy is capable of significantly suppressing the effect of inertial impact force disturbance and joint measurement noises, and achieving fast and stable tele-aiming control.

Funder

National Natural Science Foundation of China

Key Research & Development Plan of Shandong Province

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3