Anomaly Detection in the Internet of Vehicular Networks Using Explainable Neural Networks (xNN)

Author:

Aziz SaddamORCID,Faiz Muhammad TalibORCID,Adeniyi Adegoke MuideenORCID,Loo Ka-HongORCID,Hasan Kazi NazmulORCID,Xu LinliORCID,Irshad MuhammadORCID

Abstract

It is increasingly difficult to identify complex cyberattacks in a wide range of industries, such as the Internet of Vehicles (IoV). The IoV is a network of vehicles that consists of sensors, actuators, network layers, and communication systems between vehicles. Communication plays an important role as an essential part of the IoV. Vehicles in a network share and deliver information based on several protocols. Due to wireless communication between vehicles, the whole network can be sensitive towards cyber-attacks.In these attacks, sensitive information can be shared with a malicious network or a bogus user, resulting in malicious attacks on the IoV. For the last few years, detecting attacks in the IoV has been a challenging task. It is becoming increasingly difficult for traditional Intrusion Detection Systems (IDS) to detect these newer, more sophisticated attacks, which employ unusual patterns. Attackers disguise themselves as typical users to evade detection. These problems can be solved using deep learning. Many machine-learning and deep-learning (DL) models have been implemented to detect malicious attacks; however, feature selection remains a core issue. Through the use of training empirical data, DL independently defines intrusion features. We built a DL-based intrusion model that focuses on Denial of Service (DoS) assaults in particular. We used K-Means clustering for feature scoring and ranking. After extracting the best features for anomaly detection, we applied a novel model, i.e., an Explainable Neural Network (xNN), to classify attacks in the CICIDS2019 dataset and UNSW-NB15 dataset separately. The model performed well regarding the precision, recall, F1 score, and accuracy. Comparatively, it can be seen that our proposed model xNN performed well after the feature-scoring technique. In dataset 1 (UNSW-NB15), xNN performed well, with the highest accuracy of 99.7%, while CNN scored 87%, LSTM scored 90%, and the Deep Neural Network (DNN) scored 92%. xNN achieved the highest accuracy of 99.3% while classifying attacks in the second dataset (CICIDS2019); the Convolutional Neural Network (CNN) achieved 87%, Long Short-Term Memory (LSTM) achieved 89%, and the DNN achieved 82%. The suggested solution outperformed the existing systems in terms of the detection and classification accuracy.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3