Optimization of the Configuration and Operating States of Hybrid AC/DC Low Voltage Microgrid Using a Clonal Selection Algorithm with a Modified Hypermutation Operator

Author:

Rokicki Łukasz

Abstract

The issue of optimization of the configuration and operating states in low voltage microgrids is important both from the point of view of the proper operation of the microgrid and its impact on the medium voltage distribution network to which such microgrid is connected. Suboptimal microgrid configuration may cause problems in networks managed by distribution system operators, as well as for electricity consumers and owners of microsources and energy storage systems connected to the microgrid. Structures particularly sensitive to incorrect determination of the operating states of individual devices are hybrid microgrids that combine an alternating current and direct current networks with the use of a bidirectional power electronic converter. An analysis of available literature shows that evolutionary and swarm optimization algorithms are the most frequently chosen for the optimization of power systems. The research presented in this article concerns the assessment of the possibilities of using artificial immune systems, operating on the basis of the CLONALG algorithm, as tools enabling the effective optimization of low voltage hybrid microgrids. In his research, the author developed a model of a hybrid low voltage microgrid, formulated three optimization tasks, and implemented an algorithm for solving the formulated tasks based on an artificial immune system using the CLONALG algorithm. The conducted research consisted of performing a 24 h simulation of microgrid operation for each of the formulated optimization tasks (divided into 10 min independent optimization periods). A novelty in the conducted research was the modification of the hypermutation operator, which is the key mechanism for the functioning of the CLONALG algorithm. In order to verify the changes introduced in the CLONALG algorithm and to assess the effectiveness of the artificial immune system in solving optimization tasks, optimization was also carried out with the use of an evolutionary algorithm, commonly used in solving such tasks. Based on the analysis of the obtained results of optimization calculations, it can be concluded that the artificial immune system proposed in this article, operating on the basis of the CLONALG algorithm with a modified hypermutation operator, in most of the analyzed cases obtained better results than the evolutionary algorithm. In several cases, both algorithms obtained identical results, which also proves that the CLONALG algorithm can be considered as an effective tool for optimizing modern power structures, such as low voltage microgrids, including hybrid AC/DC microgrids.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3