Application of Nature-Inspired Algorithms to Computed Tomography with Incomplete Data

Author:

Pleszczyński MariuszORCID,Zielonka AdamORCID,Woźniak MarcinORCID

Abstract

This paper discusses and compares several computed tomography (CT) algorithms capable of dealing with incomplete data. This type of problem has been proposed for a symmetrical grid and symmetrically distributed transmitters and receivers. The use of symmetry significantly speeds up the process of constructing a system of equations that is the foundation of all CT algebraic algorithms. Classic algebraic approaches are effective in incomplete data scenarios, but suffer from low convergence speed. For this reason, we propose the use of nature-inspired algorithms which are proven to be effective in many practical optimization problems from various domains. The efficacy of nature-inspired algorithms strongly depends on the number of parameters they maintain and reproduce, and this number is usually substantial in the case of CT applications. However, taking into account the specificity of the reconstructed object allows to reduce the number of parameters and effectively use heuristic algorithms in the field of CT. This paper compares the efficacy and suitability of three nature-inspired heuristic algorithms: Artificial BeeColony (ABC), Ant Colony Optimization (ACO), and Clonal Selection Algorithm (CSA) in the CT context, showing their advantages and weaknesses. The best algorithm is identified and some ideas of how the remaining methods could be improved so as to better solve CT tasks are presented.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dual-Encoding Y-ResNet for generating a lens flare effect in images;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

2. Soft Inference as a Voting Mechanism in k-Nearest Neighbors Clustering Algorithm;Communications in Computer and Information Science;2024

3. Iterative Method of Adjusting Parameters in kNN via Minkowski Metric;Communications in Computer and Information Science;2024

4. Comparison of Support Vector Machine, Naive Bayes, and K-Nearest Neighbors Algorithms for Classifying Heart Disease;Communications in Computer and Information Science;2024

5. Analyzing the Impact of Principal Component Analysis on k-Nearest Neighbors and Naive Bayes Classification Algorithms;Communications in Computer and Information Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3