DSO Strategies Proposal for the LV Grid of the Future

Author:

Mroczek BartłomiejORCID,Pijarski PawełORCID

Abstract

A significant challenge for the DSO (Distribution System Operator) will be to choose the optimum strategy for flexibility service in the LV area with high RES (renewable energy sources) penetration. To this end, a representative LV grid operated in Poland was selected for analysis. Three research scenarios with RES generation were presented in the range of 1–8 kW for the power factor from 0.9 to 1. The grid PV capacity was determined for four load profiles. Based on this factor, optimum RES volume management service types were determined. Under the flexibility service, the proposed power conversion services and active RES operations for DSO were proposed. The research was conducted using the Matlab and PowerWorld Simulator environment. Optimum active power values were obtained for the RES generation function for single and dual operation systems of the power conversion system. In future, the knowledge in the field of grid capacity will enable the DSO to increase the operating efficiency of the LV grid. It will enable the optimum use of the RES generation maximisation function and proper strategy selection. It will improve the energy efficiency of the power input through the MV/LV node.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference54 articles.

1. European Commission https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal/delivering-european-green-deal_en#transforming-our-economy-and-societies

2. IPCC Home https://www.ipcc.ch/report/ar6/wg1/

3. Monofacial and Bifacial Micro PV Installation as Element of Energy Transition—The Case of Poland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3