Prediction of Crop Yield for New Mexico Based on Climate and Remote Sensing Data for the 1920–2019 Period

Author:

Yadav KaminiORCID,Geli Hatim M. E.

Abstract

Agricultural production systems in New Mexico (NM) are under increased pressure due to climate change, drought, increased temperature, and variable precipitation, which can affect crop yields, feeds, and livestock grazing. Developing more sustainable production systems requires long-term measurements and assessment of climate change impacts on yields, especially over such a vulnerable region. Providing accurate yield predictions plays a key role in addressing a critical sustainability gap. The goal of this study is the development of effective crop yield predictions to allow for a better-informed cropland management and future production potential, and to develop climate-smart adaptation strategies for increased food security. The objectives were to (1) identify the most important climate variables that significantly influence and can be used to effectively predict yield, (2) evaluate the advantage of using remotely sensed data alone and in combination with climate variables for yield prediction, and (3) determine the significance of using short compared to long historical data records for yield prediction. This study focused on yield prediction for corn, sorghum, alfalfa, and wheat using climate and remotely sensed data for the 1920–2019 period. The results indicated that the use of normalized difference vegetation index (NDVI) alone is less accurate in predicting crop yields. The combination of climate and NDVI variables provided better predictions compared to the use of NDVI only to predict wheat, sorghum, and corn yields. However, the use of a climate only model performed better in predicting alfalfa yield. Yield predictions can be more accurate with the use of shorter data periods that are based on region-specific trends. The identification of the most important climate variables and accurate yield prediction pertaining to New Mexico’s agricultural systems can aid the state in developing climate change mitigation and adaptation strategies to enhance the sustainability of these systems.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Reference105 articles.

1. Creating a Sustainable Food Future;Searchinger,2019

2. Prediction of Crop Yield Using Regression Techniques;Shastry;Int. J. Soft Comput.,2017

3. Crop yield predictions-high resolution statistical model for intra-season forecasts applied to corn in the US Gro Intelligence;Cai,2017

4. Understanding the Changes in Global Crop Yields Through Changes in Climate and Technology

5. Consistent negative response of US crops to high temperatures in observations and crop models

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3