Comparison of Compaction Alleviation Methods on Soil Health and Greenhouse Gas Emissions

Author:

Bussell JenniferORCID,Crotty Felicity,Stoate ChrisORCID

Abstract

Soil compaction can occur due to trafficking by heavy equipment and be exacerbated by unfavourable conditions such as wet weather. Compaction can restrict crop growth and increase waterlogging, which can increase the production of the greenhouse gas nitrous oxide. Cultivation can be used to alleviate compaction, but this can have negative impacts on earthworm abundance and increase the production of the greenhouse gas carbon dioxide. In this study, a field was purposefully compacted using trafficking, then in a replicated plot experiment, ploughing, low disturbance subsoiling and the application of a mycorrhizal inoculant were compared as methods of compaction alleviation, over two years of cropping. These methods were compared in terms of bulk density, penetration resistance, crop yield, greenhouse gas emissions and earthworm abundance. Ploughing alleviated topsoil compaction, as measured by bulk density and penetrometer resistance, and increased the crop biomass in one year of the study, although no yield differences were seen. Earthworm abundance was reduced in both years in the cultivated plots, and carbon dioxide flux increased significantly, although this was not significant in summer months. Outside of the summer months, nitrous oxide production increased in the non-cultivated treatments, which was attributed to increased denitrifying activity under compacted conditions.

Funder

European Union

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Reference40 articles.

1. Soil compaction effects on soil health and cropproductivity: an overview

2. The State of Soil in Europe: A contribution of the JRC to the European Environment Agency’s Environment State and Outlook Report—SOER 2010;Jones,2012

3. Soil compaction and soil management – a review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3