Abstract
Dynamic economic emission dispatch (DEED) in combination with renewable energy has recently attracted much attention. However, when wind power is considered in DEED, due to its generation uncertainty, some additional costs will be introduced and the stability of the dispatch system will be affected. To address this problem, in this paper, the energy-storage characteristic of electric vehicles (EVs) is utilized to smooth the uncertainty of wind power and reduce its impact on the system. As a result, an interaction model between wind power and EV (IWEv) is proposed to effectively reduce the impact of wind power uncertainty. Further, a DEED model based on the IWEv system (DEEDIWEv) is proposed. For solving the complex model, a self-adaptive multiple-learning multi-objective harmony-search algorithm is proposed. Both elite-learning and experience-learning operators are introduced into the algorithm to enhance its learning ability. Meanwhile, a self-adaptive parameter adjustment mechanism is proposed to adaptively select the two operators to improve search efficiency. Experimental results demonstrate the effectiveness of the proposed model and the superiority of the proposed method in solving the DEEDIWEv model.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献