Multi-Objective Stochastic Paint Optimizer for Solving Dynamic Economic Emission Dispatch with Transmission Loss Prediction Using Random Forest Machine Learning Model

Author:

Sundaram Arunachalam1ORCID,Alkhaldi Nasser S.1ORCID

Affiliation:

1. Department of Electrical Engineering, Jubail Industrial College, Al Jubail 31961, Saudi Arabia

Abstract

Dynamic economic emission dispatch problems are complex optimization tasks in power systems that aim to simultaneously minimize both fuel costs and pollutant emissions while satisfying various system constraints. Traditional methods often involve solving intricate nonlinear load flow equations or employing approximate loss formulas to account for transmission losses. These methods can be computationally expensive and may not accurately represent the actual transmission losses, affecting the overall optimization results. To address these limitations, this study proposes a novel approach that integrates transmission loss prediction into the dynamic economic emission dispatch (DEED) problem. A Random Forest machine learning model was offline-trained to predict transmission losses accurately, eliminating the need for repeated calculations during each iteration of the optimization process. This significantly reduced the computational burden of the algorithm and improved its efficiency. The proposed method utilizes a powerful multi-objective stochastic paint optimizer to solve the highly constrained and complex dynamic economic emission dispatch problem integrated with random forest-based loss prediction. A fuzzy membership-based approach was employed to determine the best compromise Pareto-optimal solution. The proposed algorithm integrated with loss prediction was validated on widely used five and ten-unit power systems with B-loss coefficients. The results obtained using the proposed algorithm were compared with seventeen algorithms available in the literature, demonstrating that the multi-objective stochastic paint optimizer (MOSPO) outperforms most existing algorithms. Notably, for the Institute of Electrical and Electronics Engineers (IEEE) thirty bus system, the proposed algorithm achieves yearly fuel cost savings of USD 37,339.5 and USD 3423.7 compared to the existing group search optimizer algorithm with multiple producers (GSOMP) and multi-objective multi-verse optimization (MOMVO) algorithms.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3