Hydrodynamic Effects of Tidal-Stream Power Extraction for Varying Turbine Operating Conditions

Author:

Flores Mateos LiliaORCID,Hartnett MichaelORCID

Abstract

Realistic evaluation of tidal-stream power extraction effects on local hydrodynamics requires the inclusion of the turbine’s operating conditions (TOC). An alternative approach for simulating the turbine’s array energy capture at a regional scale, momentum sink-TOC, is used to assess the impact of power extraction. The method computes a non-constant thrust force calculated based on the turbine’s operating conditions, and it uses the wake induction factor and blockage ratio to characterise the performance of a turbine. Additionally, the momentum sink-TOC relates the changes produced by power extraction, on the velocity and sea surface within the turbine’s near-field extension, to the turbine’s thrust force. The method was implemented in two hydrodynamic models that solved gradually varying flows (GVF) and rapidly varying flows (RVF). The local hydrodynamic effects produced by tidal-stream power extraction for varying the turbine’s operating conditions was investigated in (i) the thrust and power coefficient calculation, (ii) flow rate reduction, and (iii) tidal currents’ velocity and elevation profiles. Finally, for a turbine array that operates at optimal conditions, the potential energy resource was assessed. The maximisation of power extraction for electrical generation requires the use of an optimum turbine wake induction factor and an adequate blockage ratio, so that the power loss due to turbine wake mixing is reduced. On the other hand, the situations where limiting values of these parameters are used should be avoided as they lead to negligible power available. In terms of hydrodynamical models, an RVF solver provided a more accurate evaluation of the turbine’s operating conditions effect on local hydrodynamics. Particularly satisfactory results were obtained for a partial-fence. In the case of a fence configuration, the GVF solver was found to be a computationally economical tool to pre-assess the resource; however, caution should be taken as the solver did not accurately approximate the velocity decrease produced by energy extraction.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3