Tidal current power in Capalulu strait, North Maluku: A feasibility study

Author:

Kurniawan Alamsyah1ORCID,Azmiwinata Maulvi1,Pratama Munawir Bintang2ORCID,Kusuma Cahya3

Affiliation:

1. Ocean Engineering Program, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Jl. Ganesha No.10, Lb. Siliwangi, Bandung, Jawa Barat 40132, Indonesia

2. School of Engineering, The University of Edinburgh, Edinburgh EH9 3JL, United Kingdom

3. Mechanical Enginering Program, Sekolah Tinggi Teknologi Angkatan Laut, Jl. Bumi Moro, Morokrembangan, Surabaya, Jawa Timur 60178, Indonesia

Abstract

The Indonesian government has set goals for increasing the use of renewable energy in the coming years. Currently, Indonesia relies heavily on non-renewable energy sources, which poses a threat to the environment due to the country's growing energy needs. This study aims to assess the potential for developing a tidal power plant in Capalulu Strait, North Maluku. Using hydrodynamic modelling, the study identified two potential locations at coordinates 1.877°S – 125.328°E (Capa-2) and 1.863°S – 125.323°E (Capa-4) which were selected for having median current speeds exceeding 1.8 m/s and maximum current speeds exceeding 3.5 m/s. The study tested a hypothetical implementation of KHPS Gen5 instrument(s) by Verdant Power, a 5 m diameter turbine with a rated nominal power of 37 kW and a maximum rated power of 56 kW. A power plant layout was designed to be placed at Capa-2 and Capa-4, each location accommodating 45 turbines. The development of this power plant is estimated to produce up to 22 GWh per year. Financial analysis resulted in a LCOE of IDR 5,930/kWh. However, this price is still high compared to the national electricity tariff of IDR 1,027.70/kWh. Variations in the number of turbines also may not result in a lower LCOE than the national tariff. Nevertheless, the estimated cost of generating electricity is still competitive compared to diesel, which is around IDR 5,804/kWh.

Publisher

Center of Biomass and Renewable Energy Scientia Academy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3