3D Printing of Silicone Elastomers for Soft Actuators

Author:

Li Jiachen,Wu Shengpeng,Zhang Wei,Ma Kaiqi,Jin Guoqing

Abstract

A procedure for 3D printing of silicone elastomers with a direct ink writing (DIW) process has demonstrated great potential in areas as diverse as flexible electronics, medical devices, and soft robotics. In this report, we propose a comprehensive guide for printing highly stretchable silicones in response to material, equipment and process dilemmas. Specifically, we first tested the material properties of Dow Corning 737, then modeled and simulated two commonly used needles to select a suitable needle, followed by parameter optimization experiments using the built DIW printer to find out the appropriate printing speed and layer height with a defined air pressure and needle diameter. Finally, the optimal combination of parameters was obtained. For further demonstration, artificial muscles and structurally complex soft grippers were also printed directly to verify the feasibility of high-precision 3D printing of soft actuators with soft materials. We believe that this work could provide a guide for further work using the DIW process to print soft matter in a wide range of application scenarios.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3