Affiliation:
1. Institute of Chemical Process Engineering, University of Alicante, Ap.99, 03080 Alicante, Spain
2. Department of Chemical Engineering, University of Alicante, Ap.99, 03080 Alicante, Spain
Abstract
In this study, the impact of bioplastic design on anaerobic digestion for biogas production was investigated. This research aims to facilitate the integration of bioplastics into a circular economy, which is why our study proposes considering not only aspects related to their degradation in the formulation but also ensuring efficient behavior in anaerobic digestion plants. Thermoplastic starch (TPS) samples, derived from different starch sources and formulated with varying concentrations of calcium carbonate and thicknesses, were subjected to anaerobic digestion tests. Three key parameters were explored: the influence of filler concentration, the effect of sample thickness, and the role of starch origin. Biogas production and kinetics were assessed using biochemical methane potential (BMP) tests. The results reveal that calcium carbonate concentration negatively influenced the methane production rate, reaching 30 NmL/gVS/day for the filler-free sample, highlighting the importance of understanding filler effects on anaerobic digestion. Additionally, thicker samples exhibited slower biogas production, with a rate of 25 NmL/gVS/day compared to 30 NmL/gVS/day for the thinnest sample, emphasizing the relevance of sample thickness in influencing digestion kinetics. The starch origin did not yield significant differences in biogas production, providing valuable insights into the feasibility of using diverse starch sources in bioplastic formulations. This study enhances our understanding of bioplastic behavior during anaerobic digestion, offering essential insights for optimizing waste management strategies and advancing circular economy practices.
Funder
Agencia Estatal de Investigación
Generalitat Valenciana
Reference29 articles.
1. United Nations Environment Programme (2018). Single-Use Plastics, a Roadmap for Sustainability, United Nations Environment Programme.
2. Plastic Waste Inputs from Land into the Ocean;Jambeck;Science,2015
3. Plastics Europe (2024, August 18). Plastics-the fast Facts. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/.
4. What Potential Does the EU Single-Use Plastics Directive Have for Reducing Plastic Pollution at Coastlines and Riversides? An Evaluation Based on Citizen Science Data;Kiessling;Waste Manag.,2023
5. Market—European Bioplastics e.V. (2024, January 12). Available online: https://www.european-bioplastics.org/market/.