From Urban Design to Energy Sustainability: How Urban Morphology Influences Photovoltaic System Performance

Author:

Huang Yanyan1,Yang Yi1,Ren Hangyi1,Ye Lanxin1,Liu Qinhan1

Affiliation:

1. School of Civil Architecture and Environment, Hubei University of Technology, Wuhan 430068, China

Abstract

In response to the pressing need for sustainable urban development amidst global population growth and increased energy demands, this study explores the impact of an urban block morphology on the efficiency of building photovoltaic (PV) systems amidst the pressing global need for sustainable urban development. Specifically, the research quantitatively evaluates how building distribution and orientation influence building energy consumption and photovoltaic power generation through a comprehensive simulation model approach, employing tools, such as LightGBM, for the enhanced predictability and optimization of urban forms. Our simulations reveal that certain urban forms significantly enhance solar energy utilization and reduce cooling energy requirements. Notably, an optimal facade orientation and building density are critical for maximizing solar potential and overall energy efficiency. This study introduces novel findings on the potential of machine learning techniques to predict and refine urban morphological impacts on solar energy efficacy, offering robust tools for urban planners and architects. We discuss how strategic urban and architectural planning can significantly contribute to sustainable energy practices, emphasizing the application of our results in diverse climatic contexts. Future research should focus on refining these simulation models for broader climatic variability and integrating more granular urban morphology data to enhance precision in energy predictions.

Funder

Ministry of Science and Technology of China under the National Foreign Experts Project

Xiangyang Hubei University of Technology Industrial Research Institute

Publisher

MDPI AG

Reference66 articles.

1. (2024, July 13). World Population Prospects 2024: Summary of Results|DESA Publications. Available online: https://desapublications.un.org/publications/world-population-prospects-2024-summary-results.

2. Depletion of Fossil Fuels and Anthropogenic Climate Change—A Review;Tang;Energy Policy,2013

3. Bouckaert, S., Pales, A.F., McGlade, C., Remme, U., Wanner, B., Varro, L., D’Ambrosio, D., and Spencer, T. (2021). Net Zero by 2050: A Roadmap for the Global Energy Sector, OECD Publishing.

4. Passive Solar Urban Design: Ensuring the Penetration of Solar Energy into the City;Littlefair;Renew. Sustain. Energy Rev.,1998

5. The Untapped Area Potential for Photovoltaic Power in the European Union;Clean Technol.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3