Solar Thermochemical Green Fuels Production: A Review of Biomass Pyro-Gasification, Solar Reactor Concepts and Modelling Methods

Author:

Abanades StéphaneORCID,Rodat SylvainORCID,Boujjat HoussameORCID

Abstract

This paper addresses the solar thermochemical conversion of biomass or waste feedstocks based on pyro-gasification for the clean production of high-value and energy-intensive fuels. The utilization of solar energy for supplying the required process heat is attractive to lower the dependence of gasification processes on conventional energy resources and to reduce emissions of CO2 and other pollutants for the production of high-value chemical synthetic fuels (syngas). Using concentrated solar energy to drive the endothermal reactions further allows producing more syngas with a higher gas quality, since it has not been contaminated by combustion products, while saving biomass resources. The solar-driven process is thus a sustainable and promising alternative route, enabling syngas yield enhancement and CO2 mitigation, thereby potentially outperforming the performance of conventional processes for syngas production. This review presents relevant research studies in the field and provides the scientific/technical knowledge and background necessary to address the different aspects of the solar gasification process. An overview of the available solar concentrating technologies and their performance metrics is first introduced. The solar gasifier concepts and designs that were studied from lab to industrial scale are presented, along with their main benefits and limitations. The different management strategies proposed to deal with solar energy variations are also outlined, as well as the major pilot-scale applications and large-scale system level simulations. A specific emphasis is provided on the spouted bed technology that appears promising for the gasification process. Finally, the main modeling approaches of pyro-gasification and kinetics for simulation of gasifiers are described. This study thus provides a detailed overview of the efforts made to enhance the thermochemical performance of solar-assisted biomass gasification for synthetic fuel production.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3