Mathematical Modeling Approach to the Optimization of Biomass Storage Park Management

Author:

Nunes Leonel J. R.123ORCID

Affiliation:

1. proMetheus, Unidade de Investigação em Materiais, Energia e Ambiente Para a Sustentabilidade, Escola Superior Agrária, Instituto Politécnico de Viana do Castelo, Rua da Escola Industrial e Comercial de Nun’Alvares, 4900-347 Viana do Castelo, Portugal

2. DEGEIT—Departamento de Economia, Gestão, Engenharia Industrial e Turismo, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

3. GOVCOPP, Unidade de Investigação em Governança, Competitividade e Políticas Públicas, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

Abstract

This paper addresses the critical issue of managing biomass parks, a key component in the shift towards sustainable energy sources. The research problem centers on optimizing the management of these parks to enhance production and economic viability. Our aim was to bridge the gap in current research by developing and applying mathematical models tailored for biomass park management. The study commenced by constructing a basic model based on assumptions such as uniform biomass and steady input rates. Progressing from this initial model, we explored sophisticated control strategies, including Pontryagin’s maximum principle and dynamic programming, and employed numerical methods to tackle the nonlinearities and complexities inherent in biomass management. Our approach’s scope extended to predicting and managing biomass flow, highlighting each method’s distinct advantages. The simple model laid the groundwork for understanding, while optimal control techniques revealed the system’s intricate dynamics. The numerical methods provided practical solutions to complex equations. We found that while each method is beneficial on its own, their combined use can significantly improve decision-making in biomass park management. This research emphasizes the importance of aligning the chosen method with specific operational challenges and desired outcomes for optimal efficacy, offering both theoretical insights and practical applications in the field of renewable energy management.

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

Reference29 articles.

1. Renewable Energy Literature in Turkey: Mapping Analysis of the Field and Future Study Suggestions on Overlooked Issues;Senyapar;Int. J. Renew. Energy Res.,2023

2. A review on biomass based hydrogen production technologies;Pal;Int. J. Hydrogen Energy,2022

3. The impact of intelligent cyber-physical systems on the decarbonization of energy;Inderwildi;Energy Environ. Sci.,2020

4. Investigation of a combined heat and power (CHP) system based on biomass and compressed air energy storage (CAES);Razmi;Sustain. Energy Technol. Assess.,2021

5. Acid-based lignocellulosic biomass biorefinery for bioenergy production: Advantages, application constraints, and perspectives;Hoang;J. Environ. Manag.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3