Production of Thermostable T1 Lipase Using Agroindustrial Waste Medium Formulation

Author:

Nooh Hisham,Masomian Malihe,Salleh Abu,Mohamad Rosfarizan,Ali Mohd,Rahman Raja

Abstract

Large-scale production of T1 lipase using conventional culture media is costly. To reduce the cost of production, an alternative growth medium using local resources has been developed. In this study, the growth of recombinant Escherichia coli and expression of T1 lipase were tested using different agroindustrial wastes as carbon and nitrogen sources by conventional method. Subsequently, by using central composite rotatable design (CCRD), a set of 30 experiments was generated to evaluate the effect of different parameters, including the amount of molasses (as carbon source), fish waste (as nitrogen source), NaCl, and inducer concentration on production of T1 lipase. Response surface methodology (RSM) analysis indicated that all factors had significant effects on T1 lipase production. This statistical analysis was utilised to develop a quadratic model to correlate various important variables for the growth of the recombinant strain and regulation of gene expression to the response (T1 lipase activity). Optimum conditions for T1 lipase production were observed to be 1.0 g/L of molasses, 2.29 g/L of fish waste, 3.46 g/L of NaCl, and 0.03 mM of IPTG (Isopropyl β-d-1-thiogalactopyranoside). Based on these conditions, the actual lipase activity was found to be 164.37 U/mL, which fitted well with the maximum predicted value of 172.89 U/mL. Therefore, the results demonstrated that, the statistical analysis, performed using RSM, was efficient in optimising T1 lipase production. Moreover, the optimum conditions obtained can be applied to scale up the process and minimise the cost of enzyme production.

Funder

Kementerian Sains, Teknologi dan Inovasi

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3