Evaluation of Global Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) Products at 500 m Spatial Resolution

Author:

Zheng YajieORCID,Xiao ZhiqiangORCID,Li Juan,Yang Hua,Song JinlingORCID

Abstract

The fraction of absorbed photosynthetically active radiation (FAPAR) is a key biophysical variable directly associated with the photosynthetic activity of plants. Several global FAPAR products with different spatial resolutions have been generated from remote sensing data, and much work has focused on validating them. However, those studies have primarily evaluated global FAPAR products at a spatial resolution of 1 km or more, whereas few studies have evaluated the global 500 m resolution FAPAR product distributed in recent years. Furthermore, there are a few FAPAR products, including black-sky, white-sky and blue-sky FAPAR datasets, and almost no studies have evaluated these products. In this article, three global FAPAR products at 500 m resolution, namely MODIS (only black-sky FAPAR), MUSES and EBR (black-sky, white-sky and blue-sky FAPAR) were compared to evaluate their temporal and spatial discrepancies and direct validation was conducted to compare these FAPAR products with the FAPAR values derived from the high-resolution reference maps from the Validation of Land European Remote Sensing Instrument (VALERI) and Implementing Multi-Scale Agricultural Indicators Exploiting Sentinels (IMAGINES) projects. The results showed that the MUSES FAPAR product exhibited the best spatial integrity, whereas the MODIS and EBR FAPAR products had many missing pixels in the equatorial rainforest regions and at high latitudes in the Northern Hemisphere. The MODIS, MUSES and EBR FAPAR products were generally consistent in their spatial patterns. However, a relatively large discrepancy among these FAPAR products was present in the equatorial rainforest regions and the middle and high latitude regions where the main vegetation type was forest. The differences between the black-sky and white-sky FAPAR datasets at the global scale were significant. In January, the MUSES and EBR black-sky FAPAR values were larger than their white-sky FAPAR values in the region north of 30° north latitude but they were smaller than their white-sky FAPAR values in the region south of 30° north latitude. In July, the MUSES and EBR black-sky FAPAR values were lower than their white-sky FAPAR values in the region north of 30° south latitude and they were larger than their white-sky FAPAR values in the region south of 30° south latitude. The temporal profiles of the MUSES FAPAR product were continuous and smooth, whereas those of the MODIS and EBR FAPAR products showed many fluctuations, particularly during the growing seasons. Direct validation indicated that the MUSES FAPAR product had the best accuracy (R2 = 0.6932, RMSE = 0.1495) compared to the MODIS FAPAR product (R2 = 0.6202, RMSE = 0.1710) and the EBR FAPAR product (R2 = 0.5746, RMSE = 0.1912).

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3