An Artificial Neural Network Algorithm to Retrieve Chlorophyll a for Northwest European Shelf Seas from Top of Atmosphere Ocean Colour Reflectance

Author:

Hadjal Madjid,Medina-Lopez EncarniORCID,Ren JinchangORCID,Gallego Alejandro,McKee DavidORCID

Abstract

Chlorophyll-a (Chl) retrieval from ocean colour remote sensing is problematic for relatively turbid coastal waters due to the impact of non-algal materials on atmospheric correction and standard Chl algorithm performance. Artificial neural networks (NNs) provide an alternative approach for retrieval of Chl from space and results for northwest European shelf seas over the 2002–2020 period are shown. The NNs operate on 15 MODIS-Aqua visible and infrared bands and are tested using bottom of atmosphere (BOA), top of atmosphere (TOA) and Rayleigh corrected TOA reflectances (RC). In each case, a NN architecture consisting of 3 layers of 15 neurons improved performance and data availability compared to current state-of-the-art algorithms used in the region. The NN operating on TOA reflectance outperformed BOA and RC versions. By operating on TOA reflectance data, the NN approach overcomes the common but difficult problem of atmospheric correction in coastal waters. Moreover, the NN provides data for regions which other algorithms often mask out for turbid water or low zenith angle flags. A distinguishing feature of the NN approach is generation of associated product uncertainties based on multiple resampling of the training data set to produce a distribution of values for each pixel, and an example is shown for a coastal time series in the North Sea. The final output of the NN approach consists of a best-estimate image based on medians for each pixel, and a second image representing uncertainty based on standard deviation for each pixel, providing pixel-specific estimates of uncertainty in the final product.

Funder

UK Natural Environment Research Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3