Neural networks to retrieve in water constituents applied to radiative transfer models simulating coastal water conditions

Author:

Hadjal Madjid,Paterson Ross,McKee David

Abstract

Estimation of chlorophyll (CHL) using ocean colour remote sensing (OCRS) signals in coastal waters is difficult due to the presence of two other constituents altering the light signal: coloured dissolved organic material (CDOM) and mineral suspended sediments (MSS). Artificial neural networks (NNs) have the capacity to deal with signal complexity and are a potential solution to the problem. Here NNs are developed to operate on two datasets replicating MODIS Aqua bands simulated using Hydrolight 5.2. Artificial noise is added to the simulated signal to improve realism. Both datasets use the same ranges of in water constituent concentrations, and differ by the type of logarithmic concentration distributions. The first uses a Gaussian distribution to simulate samples from natural water conditions. The second uses a flat distribution and is intended to allow exploration of the impact of undersampling extremes at both high and low concentrations in the Gaussian distribution. The impact of the concentration distribution structure is assessed and no benefits were found by switching to a flat distribution. The normal distribution performs better because it reduces the number of low concentration samples that are relatively difficult to resolve against varying concentrations of other constituents. In this simulated environment NNs have the capacity to estimate CHL with outstanding performance compared to real in situ algorithms, except for low values when other constituents dominate the light signal in coastal waters. CDOM and MSS can also be predicted with very high accuracies using NNs. It is found that simultaneous retrieval of all three constituents using multitask learning (MTL) does not provide any advantage over single parameter retrievals. Finally it is found that increasing the number of wavebands generally improves NN performance, though there appear to be diminishing returns beyond ∼8 bands. It is also shown that a smaller number of carefully selected bands performs better than a uniformly distributed band set of the same size. These results provide useful insight into future performance for NNs using hyperspectral satellite sensors and highlight specific wavebands benefits.

Funder

Natural Environment Research Council

Publisher

Frontiers Media SA

Subject

General Medicine

Reference64 articles.

1. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe;Babin;J. Geophys. Res. Oceans,2003

2. A bio-optical model for integration into ecosystem models for the Ligurian Sea;Bengil;Prog. Oceanogr.,2016

3. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains;Bricaud;Limnol. Oceanogr.,1981

4. Evolution of the C2RCC neural network for sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters;Brockmann,2016

5. The use of neural networks for the estimation of oceanic constituents based on the MERIS instrument;Buckton;Int. J. Remote Sens.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3