Transformer-Based Global Zenith Tropospheric Delay Forecasting Model

Author:

Zhang HuanORCID,Yao YibinORCID,Xu Chaoqian,Xu WeiORCID,Shi Junbo

Abstract

Zenith tropospheric delay (ZTD) plays an important role in high-precision global navigation satellite system (GNSS) positioning and meteorology. At present, commonly used ZTD forecasting models comprise empirical, meteorological parameter, and neural network models. The empirical model can only fit approximate periodic variations, and its accuracy is relatively low. The accuracy of the meteorological parameter model depends heavily on the accuracy of the meteorological parameters. The recurrent neural network (RNN) is suitable for short-term series data prediction, but for long-term series, the ZTD prediction accuracy is clearly reduced. Long short-term memory (LSTM) has superior forecasting accuracy for long-term ZTD series; however, the LSTM model is complex, cannot be parallelized, and is time-consuming. In this study, we propose a novel ZTD time-series forecasting utilizing transformer-based machine-learning methods that are popular in natural language processing (NLP) and forecasting global ZTD, the training parameters provided by the global geodetic observing system (GGOS). The proposed transformer model leverages self-attention mechanisms by encoder and decoder modules to learn complex patterns and dynamics from long ZTD time series. The numeric results showed that the root mean square error (RMSE) of the forecasting ZTD results were 1.8 cm and mean bias, STD, MAE, and R 0.0, 1.7, 1.3, and 0.95, respectively, which is superior to that of the LSTM, RNN, convolutional neural network (CNN), and GPT3 series models. We investigated the global distribution of these accuracy indicators, and the results demonstrated that the accuracy in continents was superior to maritime space transformer ZTD forecasting model accuracy at high latitudes superior to that at low latitude. In addition to the overall accuracy improvement, the proposed transformer ZTD forecast model also mitigates the accuracy variations in space and time, thereby guaranteeing high accuracy globally. This study provides a novel method to estimate the ZTD, which could potentially contribute to precise GNSS positioning and meteorology.

Funder

National Natural Science Foundation of China

Guangxi Science and Technology Plan Project Technology Innovation Guidance Special

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference44 articles.

1. An advanced residual error model for tropospheric delay estimation

2. Development of an improved empirical model for slant delays in the troposphere (GPT2w)

3. VMF3/GPT3: refined discrete and empirical troposphere mapping functions

4. PPP-RTK: Precise point positioning using state-space representation in RTK networks;Wabbena;Proceedings of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2005),2005

5. Improving the Estimation of Weighted Mean Temperature in China Using Machine Learning Methods

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3