Global, spatially explicit modelling of zenith wet delay with XGBoost

Author:

Crocetti LauraORCID,Schartner MatthiasORCID,Zus Florian,Zhang WenyuanORCID,Moeller GregorORCID,Navarro VicenteORCID,See LindaORCID,Schindler KonradORCID,Soja BenediktORCID

Abstract

AbstractRadio signals transmitted by Global Navigation Satellite System (GNSS) satellites experience tropospheric delays. While the hydrostatic part, referred to as zenith hydrostatic delay (ZHD) when mapped to the zenith direction, can be analytically modelled with sufficient accuracy, the wet part, referred to as zenith wet delay (ZWD), is much more difficult to determine and needs to be estimated. Thus, there exist several ZWD models which are used for various applications such as positioning and climate research. In this study, we present a data-driven, global model of the spatial ZWD field, based on the Extreme Gradient Boosting (XGBoost). The model takes the geographical location, the time, and a number of meteorological variables (in particular, specific humidity at several pressure levels) as input, and can predict ZWD anywhere on Earth as long as the input features are available. It was trained on ZWDs at 10718 GNSS stations and tested on ZWDs at 2684 GNSS stations for the year 2019. Across all test stations and all observations, the trained model achieved a mean absolute error of 6.1 mm, respectively, a root mean squared error of 8.1 mm. Comparisons of the XGBoost-based ZWD predictions with independently computed ZWDs and baseline models underline the good performance of the proposed model. Moreover, we analysed regional and monthly models, as well as the seasonal behaviour of the ZWD predictions in different climate zones, and found that the global model exhibits a high predictive skill in all regions and across all months of the year.

Funder

Swiss Federal Institute of Technology Zurich

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3