Abstract
In the field of wireless communication, the increasing number of devices makes limited spectrum resources more scarce and accelerates the complexity of the electromagnetic environment, posing a serious threat to the sustainability of the industry’s development. Therefore, new effective technical methods are needed to mine and analyze the activity rules of spectrum resources to reduce the risk of frequency conflict. This paper introduces the idea of graphs and proposes a spectrum resource analysis and prediction architecture based on big data. In this architecture, a spatial correlation model of spectrum activities is constructed through feature extraction. In addition, based on this correlation model, a depth learning network based on graph convolution is designed, which uses the prior information of spatial activity to achieve the efficient prediction of spectrum resources. Numerical experiments were carried out on two datasets with different spatial scales. Compared with the best baseline model, the prediction error is reduced by 8.3% on the small-scale dataset and 11.7% on the large-scale dataset. This shows that the proposed method is applicable to different spatial scales and has more obvious advantages in complex scenes with large spatial scales. It can effectively use the results of spatial domain analysis to improve the prediction accuracy of spectrum resources.
Funder
National Natural Science Foundation of China
Central Universities
Key Laboratory of Advanced Marine Communication and Information Technology, Ministry of Industry and Information Technology, Harbin Engineering University
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献