A Novel Joint Time-Frequency Spectrum Resources Sustainable Risk Prediction Algorithm Based on TFBRL Network for the Electromagnetic Environment

Author:

Li Shuang1ORCID,Sun Yaxiu1ORCID,Han Yu1ORCID,Alfarraj Osama2ORCID,Tolba Amr2ORCID,Sharma Pradip Kumar3ORCID

Affiliation:

1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China

2. Computer Science Department, Community College, King Saud University, Riyadh 11437, Saudi Arabia

3. Department of Computing Science, University of Aberdeen, Aberdeen AB24 3FX, UK

Abstract

To protect the electromagnetic environment and understand its current state in a timely manner, monitoring the electromagnetic environment has great practical significance, while massive amounts of data are generated. It is crucial to utilize data mining technology to extract valuable information from these massive amounts of data for effective spectrum management. Traditional spectrum prediction methods do not integrate the prior information of spectrum resource occupancy, so that the prediction of the channel state of a single frequency point is of limited significance. To address these issues, the paper describes a dynamic threshold algorithm which mines bottom noise and spectrum resource occupancy from massive electromagnetic environment data. Moreover, the paper describes a joint time-frequency spectrum resource prediction algorithm based on the time-frequency block residual LSTM (TFBRL) network, which utilizes hourly time closeness, daily period, and annual trend as prior knowledge of spectrum resources. The TFBRL network comprises three main parts: (1) a residual convolution network with a squeeze-and-excitation (SE) attention mechanism, (2) a long short term memory (LSTM) model with memory ability to capture sequence latent information, and (3) a feature fusion module based on a matrix to combine time closeness, daily period, and annual trend feature components. Experimental results demonstrate that the TFBRL network outperforms the baseline networks, improving by 31.37%, 16.00% and 13.06% compared with the best baseline for MSE, RMSE and MAE, respectively. Thus, the TFBRL network has good risk prediction performance and lays the foundation for subsequent frequency scheduling.

Funder

Researchers Supporting Project of King Saud University, Riyadh, Saudi Arabia

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Active eavesdropping detection: a novel physical layer security in wireless IoT;EURASIP Journal on Advances in Signal Processing;2023-11-22

2. Poisoning Detection in Federated Learning System: An Adaptive Approach;2023 International Conference on Intelligent Communication and Networking (ICN);2023-11-10

3. WiFi Emitter Identification Based on Few-Shot Convex Optimizable Network;2023 International Conference on Ubiquitous Communication (Ucom);2023-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3