The Role of Nitrogen in Inducing Salt Stress Tolerance in Crocus sativus L.: Assessment Based on Plant Growth and Ions Distribution in Leaves

Author:

Hashemi Seyedeh Elahe,Madahhosseini Shahab,Pirasteh-Anosheh HadiORCID,Sedaghati Ebrahim,Race MarcoORCID

Abstract

The role of nitrogen (N) in inducing salt stress tolerance in plants is not well understood, and the question is more complicated in saffron (Crocus sativus L.), which is sensitive to both nitrogen rates and salinity. The present study was conducted to investigate the effects of different N (0, 50 and 150 kg ha−1) supplies on saffron growth and ions concentration in shoots under several salt stress levels (0, 3, 6 and 9 dS m−1). Salinity negatively affected plant growth assessed by leaves number, leaves length, shoot dry weight, corms number and corms weight. Moreover, there was a clear direct correlation between higher salinity value and less plant growth. Different effects due to salinity and nitrogen were evident in terms of the number and length of leaves during the growing season from day 60 after first irrigation (DAF) and achieved a peak after 90 DAF. Salt stress also affected the ions balance, as Na+, Cl− and Ca2+ were enhanced and K+ was reduced, thereby damaging the plants. Nitrogen partially mitigated the negative impacts of salinity on plant growth and ions balance, although this compensatory effect was observed when nitrogen supply was set at 50 kg N ha−1. For example, in 2019–2020, the losses in shoot dry weight due to 9 dS m−1 salinity amounted to 47%, 44% and 54%, at 0, 50 and 100 kg N ha−1 respectively, thus indicating a less negative effect of salinity at 50 kg N ha−1. Moreover, at 100 kg N ha−1 the negative effect of salinity was stronger for six and nine dS m−1. Our findings suggested that the optimum N supply (50 kg N ha−1) strengthened the plant under non-saline and moderately saline (6 dS m−1) conditions, and consequently improved salt tolerance.

Funder

Vali-e-Asr University of Rafsanjan

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3