Alfalfa growth and nitrogen fixation constraints in salt-affected soils are in part offset by increased nitrogen supply

Author:

Wan Weifan,Liu Qian,Zhang Caihong,Li Ke,Sun Zhi,Li Yuejin,Li Haigang

Abstract

IntroductionIn China, alfalfa (Medicago sativa L.) is often grown on marginal land with poor soil fertility and suboptimal climate conditions. Soil salt stress is one of the most limiting factors for alfalfa yield and quality, through its inhibition of nitrogen (N) uptake and N fixation.MethodsTo understand if N supply could improve alfalfa yield and quality through increasing N uptake in salt-affected soils, a hydroponic experiment and a soil experiment were conducted. Alfalfa growth and N fixation were evaluated in response to different salt levels and N supply levels.Results and discussionThe results showed that salt stress not only significantly decreased alfalfa biomass, by 43%–86%, and N content, by 58%–91%, but also reduced N fixation ability and N derived from the atmosphere (%Ndfa) through the inhibition of nodule formation and N fixation efficiency when the salt level was above 100 mmol Na2SO4 L–1. Salt stress also decreased alfalfa crude protein by 31%–37%. However, N supply significantly improved shoot dry weight by 40%–45%, root dry weight by 23%–29%, and shoot N content by 10%–28% for alfalfa grown in salt-affected soil. The N supply was also beneficial for the %Ndfa and N fixation for alfalfa with salt stress, and the increase reached 47% and 60%, respectively. Nitrogen supply offset the negative effects on alfalfa growth and N fixation caused by salt stress, in part through improving plant N nutrition status. Our results suggest that optimal N fertilizer application is essential to alleviate the loss of growth and N fixation in alfalfa in salt-affected soils.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference61 articles.

1. Isolation of plant growth promoting rhizobacteria from wheat rhizosphere and their effect on improving growth, yield and nutrient uptake of plants;Abbasi;Plant Biosyst.,2011

2. Nodulation and nitrogenase activity of Vicia faba and Glycine max in relation to rhizobia strain, form and level of combined nitrogen;Abdel Wahab;Phyton Annales Rei Botanicae Horn,1995

3. Plant Microbes Symbiosis: Applied Facets

4. Nodulation and nitrogen fixation in extreme environments;Bordeleau;Plant Soil,1994

5. Estimation of nitrogen fixation and transfer from alfalfa to associated grasses in mixed swards under field conditions;Burity;Plant Soil,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3