Driving Forces Analysis of Non-structural Carbohydrates for Phragmites australis in Different Habitats of Inland River Wetland

Author:

Jiao LiangORCID,Zhou Yi,Liu Xuerui,Wang Shengjie,Li Fang

Abstract

Habitat variation in non-structural carbohydrates (NSC) reflects the resource allocation trade-offs for clonal plants, and its driving force analysis embodies the ecological adaptation strategy of clonal plants to heterogeneous environments. In this paper, the reed (Phragmites australis) in the northwestern inland wetlands of China, as a typical example of clonal plants, was used as the research object. The content and distribution of NSC in reeds and their response characteristics to soil environmental factors were compared under three different environmental gradients with wet, salt marsh and desert habitats. The results showed: (1) the content of NSC and starch gradually increased and the content of soluble sugar gradually decreased from wetland to desert habitats, and the ratio of soluble sugar to starch increased significantly (p < 0.05), which demonstrated that reeds converted more NSC into starch to adapt to harsh environments as the environment changed. (2) Reeds tended to invest more NSC in underground architectures to achieve survival and growth with the increase in environmental stress, providing the evidence that NSC were transferred from leaf to rhizome, and root, stem and rhizome received more soluble sugar investment. The ratio of soluble sugar to starch of reed stem and rhizome increased significantly with the increasing content of soluble sugar and the decreasing content of starch, and more starch was converted into soluble sugar to resist the harsh environment. (3) Soil water, soil bulk density and salinity were the main driving forces for the NSC content and the distribution characteristics of reeds using the relative importance analysis. The study results clarified the habitat variation law, and the main environmental driving forces of NSC for reeds in inland river wetlands, which provided the significant references for enriching the ecology research theory of clonal plants and protection measures in the fragile and sensitive wetlands in arid regions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3