Living Tree Moisture Content Detection Method Based on Intelligent UHF RFID Sensors and OS-PELM

Author:

Wu YinORCID,Zhang ChengwuORCID,Liu Wenbo

Abstract

Moisture content (MC) detection plays a vital role in the monitoring and management of living trees. Its measurement accuracy is of great significance to the progress of the forestry informatization industry. Targeting the drawbacks of high energy consumption, low practicability, and poor sustainability in the current field of living tree MC detection, this work designs and implements an ultra-high-frequency radio frequency identification (UHF RFID) sensor system based on a deep learning model, with the main goals of non-destructive testing and high-efficiency recognition. The proposed MC diagnostic system includes two passive tags which should be mounted on the trunk and one remote data processing terminal. First, the UHF reader collects information from the living trees in the forest; then, an improved online sequential parallel extreme learning machine algorithm (OS-PELM) is proposed and trained to establish a specific MC prediction model. This mechanism could self-adjust its neuron network structure according to the features of the data input. The experimental results show that, for the entire living tree dataset, the MC prediction model based on the OS-PELM algorithm can identify the MC level with a root-mean-square error (RMSE) of no more than 0.055 within a measurement range of 1.2 m. Compared with the results predicted by other algorithms, the mean absolute error (MAE) and RMSE are 0.0225 and 0.0254, respectively, which are better than the ELM and OS-ELM algorithms. Comparisons also prove that the prediction model has the advantages of high precision, strong robustness, and broad applicability. Therefore, the designed MC detection system fully meets the demand of forestry Artificial Intelligence of Things.

Funder

National Natural Science Foundation of China

Jiangsu Government Scholarship for Overseas Studies

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3