Internet-of-Things-Based Multiple-Sensor Monitoring System for Soil Information Diagnosis Using a Smartphone

Author:

Wu Yin1ORCID,Yang Zenan1,Liu Yanyi1

Affiliation:

1. College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China

Abstract

The rise of Internet of Things (IoT) technology has moved the digital world in a new direction and is considered the third wave of the information industry. To meet the current growing demand for food, the agricultural industry should adopt updated technologies and smart agriculture based on the IoT which will strongly enable farmers to reduce waste and increase productivity. This research presents a novel system for the application of IoT technology in agricultural soil measurements, which consists of multiple sensors (temperature and moisture), a micro-processor, a microcomputer, a cloud platform, and a mobile phone application. The wireless sensors can collect and transmit soil information in real time with a high speed, while the mobile phone app uses the cloud platform as a monitoring center. A low power consumption is specified in the hardware and software, and a modular power supply and time-saving algorithm are adopted to improve the energy effectiveness of the nodes. Meanwhile, a novel soil information prediction strategy was explored based on the deep Q network (DQN) reinforcement learning algorithm. Following the weighted combination of a bidirectional long short-term memory, online sequential extreme learning machine, and parallel extreme machine learning, the DQN Bi-OS-P prediction model was obtained. The proposed data acquisition system achieved a long-term stable and reliable collection of time-series soil data with equal intervals and provided an accurate dataset for the precise diagnosis of soil information. The RMSE, MAE, and MAPE of the DQN Bi-OS-P were all reduced, and the R2 was improved by 0.1% when compared to other methods. This research successfully implemented the smart soil system and experimentally showed that the time error between the value displayed on the mobile phone app and its exact acquisition moment was no more than 3 s, proving that mobile applications can be effectively used for the real-time monitoring of soil quality and conditions in wireless multi-sensing based on the Internet of Things.

Funder

National Natural Science Foundation of China

China’s Jiangsu Provincial Government Scholarship for Overseas Study

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference46 articles.

1. Twenty-two years of precision agriculture: A bibliometric review;Misara;Precis. Agric.,2022

2. Agricultural IOT architecture and application model research;Zheng;Sci. Agric. Sin.,2017

3. Application status and prospect of edge computing in smart agriculture;Huang;Trans. Chin. Soc. Agric. Eng. (Trans. CSAE),2022

4. Complementing IoT services through software defined networking and edge computing: A comprehensive survey;Rafique;IEEE Commun. Surv. Tutor.,2020

5. The interplay between the internet of things and agriculture: A bibliometric analysis and research agenda;Rejeb;Internet Things,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3