Using Deep Neural Network Methods for Forecasting Energy Productivity Based on Comparison of Simulation and DNN Results for Central Poland—Swietokrzyskie Voivodeship

Author:

Pikus Michal1ORCID,Wąs Jarosław1ORCID

Affiliation:

1. AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, Department of Applied Computer Science, av. Mickiewicza 30, 30-059 Krakow, Poland

Abstract

Forecasting electricity demand is of utmost importance for ensuring the stability of the entire energy sector. However, predicting the future electricity demand and its value poses a formidable challenge due to the intricate nature of the processes influenced by renewable energy sources. Within this piece, we have meticulously explored the efficacy of fundamental deep learning models designed for electricity forecasting. Among the deep learning models, we have innovatively crafted recursive neural networks (RNNs) predominantly based on LSTM and combined architectures. The dataset employed was procured from a SolarEdge designer. The dataset encompasses daily records spanning the past year, encompassing an exhaustive collection of parameters extracted from solar farm (based on location in Central Europe (Poland Swietokrzyskie Voivodeship)). The experimental findings unequivocally demonstrated the exceptional superiority of the LSTM models over other counterparts concerning forecasting accuracy. Consequently, we compared multilayer DNN architectures with results provided by the simulator. The measurable results of both DNN models are multi-layer LSTM-only accuracy based on R2—0.885 and EncoderDecoderLSTM R2—0.812.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3