Day-Ahead Wind Power Forecasting in Poland Based on Numerical Weather Prediction

Author:

Bochenek BogdanORCID,Jurasz JakubORCID,Jaczewski AdamORCID,Stachura Gabriel,Sekuła PiotrORCID,Strzyżewski Tomasz,Wdowikowski Marcin,Figurski Mariusz

Abstract

The role of renewable energy sources in the Polish power system is growing. The highest share of installed capacity goes to wind and solar energy. Both sources are characterized by high variability of their power output and very low dispatchability. Taking into account the nature of the power system, it is, therefore, imperative to predict their future energy generation to economically schedule the use of conventional generators. Considering the above, this paper examines the possibility to predict day-ahead wind power based on different machine learning methods not for a specific wind farm but at national level. A numerical weather prediction model used operationally in the Institute of Meteorology and Water Management–National Research Institute in Poland and hourly data of recorded wind power generation in Poland were used for forecasting models creation and testing. With the best method, the Extreme Gradient Boosting, and two years of training (2018–2019), the day-ahead, hourly wind power generation in Poland in 2020 was predicted with 26.7% mean absolute percentage error and 4.5% root mean square error accuracy. Seasonal and daily differences in predicted error were found, showing high mean absolute percentage error in summer and during daytime.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference47 articles.

1. https://www.pse.pl/

2. Polish Power System-Report 2020 https://www.pse.pl/dane-systemowe/funkcjonowanie-kse/raporty-roczne-z-funkcjonowania-kse-za-rok/raporty-za-rok-2020#t1_1

3. ENTSO-E Transparency Platform https://transparency.entsoe.eu/

4. National Electricity Demand in 2020 https://www.cire.pl/item,211874,1,0,0,0,0,0,krajowe-zapotrzebowanie-na-energie-elektryczna-w-2020-r.html

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3