Abstract
A mobile-phone-based diagnostic tool, which most of the population can easily access, could be a game changer in increasing the number of examinations of people with dental caries. This study aimed to apply a deep learning algorithm in diagnosing the stages of smooth surface caries via smartphone images. Materials and methods: A training dataset consisting of 1902 photos of the smooth surface of teeth taken with an iPhone 7 from 695 people was used. Four deep learning models, consisting of Faster Region-Based Convolutional Neural Networks (Faster R-CNNs), You Only Look Once version 3 (YOLOv3), RetinaNet, and Single-Shot Multi-Box Detector (SSD), were tested to detect initial caries lesions and cavities. The reference standard was the diagnosis of a dentist based on image examination according to the International Caries Classification and Management System (ICCMS) classification. Results: For cavitated caries, YOLOv3 and Faster R-CNN showed the highest sensitivity among the four tested models, at 87.4% and 71.4%, respectively. The sensitivity levels of these two models were only 36.9 % and 26% for visually non-cavitated (VNC). The specificity of the four models reached above 86% for cavitated caries and above 71% for VNC. Conclusion: The clinical application of YOLOv3 and Faster R-CNN models for diagnosing dental caries via smartphone images was promising. The current study provides a preliminary insight into the potential translation of AI from the laboratory to clinical practice.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献