Deep Learning Application in Dental Caries Detection Using Intraoral Photos Taken by Smartphones

Author:

Thanh Mai Thi Giang,Van Toan Ngo,Ngoc Vo Truong Nhu,Tra Nguyen ThuORCID,Giap Cu NguyenORCID,Nguyen Duc MinhORCID

Abstract

A mobile-phone-based diagnostic tool, which most of the population can easily access, could be a game changer in increasing the number of examinations of people with dental caries. This study aimed to apply a deep learning algorithm in diagnosing the stages of smooth surface caries via smartphone images. Materials and methods: A training dataset consisting of 1902 photos of the smooth surface of teeth taken with an iPhone 7 from 695 people was used. Four deep learning models, consisting of Faster Region-Based Convolutional Neural Networks (Faster R-CNNs), You Only Look Once version 3 (YOLOv3), RetinaNet, and Single-Shot Multi-Box Detector (SSD), were tested to detect initial caries lesions and cavities. The reference standard was the diagnosis of a dentist based on image examination according to the International Caries Classification and Management System (ICCMS) classification. Results: For cavitated caries, YOLOv3 and Faster R-CNN showed the highest sensitivity among the four tested models, at 87.4% and 71.4%, respectively. The sensitivity levels of these two models were only 36.9 % and 26% for visually non-cavitated (VNC). The specificity of the four models reached above 86% for cavitated caries and above 71% for VNC. Conclusion: The clinical application of YOLOv3 and Faster R-CNN models for diagnosing dental caries via smartphone images was promising. The current study provides a preliminary insight into the potential translation of AI from the laboratory to clinical practice.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3