Multivariate Time Series Deep Spatiotemporal Forecasting with Graph Neural Network

Author:

He ZichaoORCID,Zhao Chunna,Huang Yaqun

Abstract

Multivariate time series forecasting has long been a subject of great concern. For example, there are many valuable applications in forecasting electricity consumption, solar power generation, traffic congestion, finance, and so on. Accurately forecasting periodic data such as electricity can greatly improve the reliability of forecasting tasks in engineering applications. Time series forecasting problems are often modeled using deep learning methods. However, the deep information of sequences and dependencies among multiple variables are not fully utilized in existing methods. Therefore, a multivariate time series deep spatiotemporal forecasting model with a graph neural network (MDST-GNN) is proposed to solve the existing shortcomings and improve the accuracy of periodic data prediction in this paper. This model integrates a graph neural network and deep spatiotemporal information. It comprises four modules: graph learning, temporal convolution, graph convolution, and down-sampling convolution. The graph learning module extracts dependencies between variables. The temporal convolution module abstracts the time information of each variable sequence. The graph convolution is used for the fusion of the graph structure and the information of the temporal convolution module. An attention mechanism is presented to filter information in the graph convolution module. The down-sampling convolution module extracts deep spatiotemporal information with different sparsities. To verify the effectiveness of the model, experiments are carried out on four datasets. Experimental results show that the proposed model outperforms the current state-of-the-art baseline methods. The effectiveness of the module for solving the problem of dependencies and deep information is verified by ablation experiments.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3