Three Novel Artificial Neural Network Architectures Based on Convolutional Neural Networks for the Spatio-Temporal Processing of Solar Forecasting Data

Author:

Benavides Cesar Llinet1ORCID,Manso-Callejo Miguel-Ángel1ORCID,Cira Calimanut-Ionut1ORCID

Affiliation:

1. Departamento de Ingeniería Topográfica y Cartográfica, E.T.S.I. en Topografía Geodesia y Cartografía, Universidad Politécnica de Madrid, C/Mercator 2, 28031 Madrid, Spain

Abstract

In this work, three new convolutional neural network models—spatio-temporal convolutional neural network versions 1 and 2 (ST_CNN_v1 and ST_CNN_v2), and the spatio-temporal dilated convolutional neural network (ST_Dilated_CNN)—are proposed for solar forecasting and processing global horizontal irradiance (GHI) data enriched with meteorological and astronomical variables. A comparative analysis of the proposed models with two traditional benchmark models shows that the proposed ST_Dilated_CNN model outperforms the rest in capturing long-range dependencies, achieving a mean absolute error of 31.12 W/m2, a mean squared error of 54.07 W/m2, and a forecast skill of 37.21%. The statistical analysis carried out on the test set suggested highly significant differences in performance (p-values lower than 0.001 for all metrics in all the considered scenarios), with the model with the lowest variability in performance being ST_CNN_v2. The statistical tests applied confirmed the robustness and reliability of the proposed models under different conditions. In addition, this work highlights the significant influence of astronomical variables on prediction performance. The study also highlights the intricate relationship between the proposed models and meteorological and astronomical input characteristics, providing important insights into the field of solar prediction and reaffirming the need for further research into variability factors that affect the performance of models.

Publisher

MDPI AG

Reference45 articles.

1. BOE (2024, June 16). Resolución de 30 de Diciembre de 2020, de la Dirección General de Calidad y Evaluación Ambiental, por la Que se Formula la Declaración Ambiental Estratégica del Plan Nacional Integrado de Energía y Clima 2021–2030. Madrid, 2021. Available online: https://www.boe.es/diario_boe/txt.php?id=BOE-A-2021-421.

2. The value of solar forecasts and the cost of their errors: A review;Gandhi;Renew. Sustain. Energy Rev.,2024

3. A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality;Yang;Renew. Sustain. Energy Rev.,2022

4. Cesar, L.B., e Silva, R.A., Callejo, M.M., and Cira, C.-I. (2022). Review on Spatio-Temporal Solar Forecasting Methods Driven by In Situ Measurements or Their Combination with Satellite and Numerical Weather Prediction (NWP) Estimates. Energies, 15.

5. A review on global solar radiation prediction with machine learning models in a comprehensive perspective;Zhou;Energy Convers. Manag.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3