A PCA-LSTM-Based Method for Fault Diagnosis and Data Recovery of Dry-Type Transformer Temperature Monitoring Sensor

Author:

Zheng Mingze,Yang Kun,Shang Chunxue,Luo YiORCID

Abstract

The failure that occurs during the dry-type transformer temperature monitoring sensor working will result in wrong data output, which may cause the monitor and monitoring background to respond incorrectly. To solve this problem, a fault diagnosis and data recovery algorithm based on principal component analysis (PCA), long short-term memory neural network (LSTM), and decision tree is proposed. It can realize the fault sensor location, fault diagnosis, and data recovery under dynamic processes. First, a set of temperature monitors was designed to collect the temperature inside the dry-type transformer in real-time by using the collected temperature data to build a PCA-based fault diagnosis model and a LSTM-based data recovery model. A fault location model based on a decision tree was constructed for five typical sensor fault types. Finally, the three models were constructed to obtain the sensor fault diagnosis and recovery algorithm. We then transplanted the algorithm to the temperature monitor. The experimental results showed that the recognition rate of the algorithm for different fault diagnoses of single- or multiple-sensors was above 96%. The diagnosis time was less than 1 ms. The recovery error was within 0.1 °C. The field experiments verified that the algorithm could significantly improve the stability of the monitor. Even if the sensor fails, it can also ensure that the dry-type transformer works within the normal range.

Funder

National Natural Science Foundation of China

Ten Thousand Talent Plans for Young Top-notch Talents of Yunnan Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3