Abstract
Subway station projects are characterized by complex construction technology, complex site conditions, and being easily influenced by the surrounding environment; thus, construction safety accidents occur frequently. In order to improve the computing performance of the early risk warning system in subway station construction, a novel model based on least-squares support vector machines (LSSVM) optimized by quantum-behaved particle swarm optimization (QPSO) was proposed. First, early warning factors from five aspects (man, machine, management, material, and the environment) were selected based on accident causation theory and literature research. The data acquisition method of each risk factor was provided in detail. Then, the LSSVM with strong small sample analysis and nonlinear analysis abilities was chosen to give the early warning. To further ameliorate the early warning accuracy of the LSSVM, QPSO with a strong global retrieval ability was used to find the optimal calculation parameters of the LSSVM. Seventeen subway stations of Chengdu Metro Line 11 in China were picked as the empirical objects. The results demonstrated that the best regularization parameter was 1.742, and the best width parameter was 14.167. The number of misjudged samples of the proposed model was 1, and the early warning error rate was only 4.41%, which met the needs of engineering practice. Compared with the classic and latest methods, the proposed model was found to have a faster prediction speed and higher prediction accuracy.
Funder
Science and Technology Project of Wuhan Urban and Rural Construction Bureau, China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献