Mobile Charging Sequence Scheduling for Optimal Sensing Coverage in Wireless Rechargeable Sensor Networks

Author:

Li Jinglin12,Jiang Chengpeng12,Wang Jing3ORCID,Xu Taian4,Xiao Wendong123ORCID

Affiliation:

1. School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Beijing Engineering Research Center of Industrial Spectrum Imaging, Beijing 100083, China

3. Shunde Innovation School, University of Science and Technology Beijing, Shunde 528399, China

4. Zaozhuang University, Zaozhuang 277160, China

Abstract

In wireless rechargeable sensor networks (WRSNs), a novel approach to energy replenishment is offered by the utilization of mobile chargers (MCs), which charge nodes via wireless energy transfer technology. However, previous research on mobile charging schemes has commonly prioritized charging efficiency as a performance index, neglecting the importance of quality of sensing coverage (QSC). As the network scale increases, the MC’s charging power becomes unable to meet the energy needs of all nodes, leading to a decline in network QSC when nodes’ energy is depleted. To solve this problem, we study the problem of mobile charging sequence scheduling for optimal network QSC (MSSQ) and propose an improved quantum-behaved particle swarm optimization (IQPSO) algorithm. With the attraction of potential energy in quantum space, this algorithm will adaptively adjust the contraction expansion coefficient iteratively, leading to a global optimal solution for the mobile charging sequence. Extensive simulation results demonstrate the superiority of IQPSO over the widely used QPSO and Greedy algorithms in terms of network QSC, especially in large-scale networks.

Funder

National Natural Science Foundations of China

Foshan Science and Technology Innovation Special Project

Regional Joint Fund of the Guangdong Basic and Applied Basic Research Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3